\/svg>","ionicons-filled--link":"<\/svg>"}) Accessibility Tools Invert colors Monochrome Dark contrast Light contrast Low saturation High saturation Highlight links Highlight headings Screen reader Read mode Content scaling 100% Font size 100% Line height 100% Letter spacing 100% Skip to main content PL The Institute The Institute General information Emploees News Scientific News Gender equality plan Address and contact data Research Research profile List of publications Information in BIP Scientific Council Organizational structure GDPR Events Seminars Current seminars List of seminars Conferences Current conferences Past conferences For students Doctoral school General Information Curriculum Recruitment School Council Doctoral Student Council Teaching Doctoral students Mid-term evaluation For students Master theses Student training Visiting the Institute For employees Institute e-mail Eduroam Publication registry Contact us Address and contact data Important phone numbers and emails PL The Institute The Institute General information Emploees News Scientific News Gender equality plan Address and contact data Research Research profile List of publications Information in BIP Scientific Council Organizational structure GDPR Events Seminars Current seminars List of seminars Conferences Current conferences Past conferences For students Doctoral school General Information Curriculum Recruitment School Council Doctoral Student Council Teaching Doctoral students Mid-term evaluation For students Master theses Student training Visiting the Institute For employees Institute e-mail Eduroam Publication registry Contact us Address and contact data Important phone numbers and emails Events Home Events List of seminars Seminar "Coherence-Correlations-Complexity", Dept. of Theoretical Physics, Wrocław University of Technology 13:15, 14-12-03 Sala 320a bud. A-1, Politechnika Wrocławska The decay of quantum correlations in quantum dot spin qubits for magnetic field measurementdr Katarzyna RoszakKatedra Fizyki Teoretycznej Wydziału PPT Politechniki WrocławskiejWe address the question of the role of quantum correlations beyond entanglement in context of quantum magnetometry. To this end, we study the evolution of the quantum discord, measured by the rescaled discord, of two electron-spin qubits interacting with an environment of nuclear spins via the hyperfine interaction. We have found that depending on the initial state the evolution can or cannot display indifferentiability points in its time-evolution (due to the energy conservation law), as well as non-trivial dependence on inter-qubit phase. Furthermore, we show that for initial Bell states, quantum correlations display a strong magnetic-field sensitivity which can be utilized for decoherence-driven measurements of the external magnetic field. The potential discord-based measurement is sensitive to a wider range of magnetic field values than the entanglement-based measurement. In principle, entanglement is not a necessary resource for reliable decoherence-driven measurement, while the presence of quantum correlations beyond entanglement is.
Accessibility Tools
We address the question of the role of quantum correlations beyond entanglement in context of quantum magnetometry. To this end, we study the evolution of the quantum discord, measured by the rescaled discord, of two electron-spin qubits interacting with an environment of nuclear spins via the hyperfine interaction. We have found that depending on the initial state the evolution can or cannot display indifferentiability points in its time-evolution (due to the energy conservation law), as well as non-trivial dependence on inter-qubit phase. Furthermore, we show that for initial Bell states, quantum correlations display a strong magnetic-field sensitivity which can be utilized for decoherence-driven measurements of the external magnetic field. The potential discord-based measurement is sensitive to a wider range of magnetic field values than the entanglement-based measurement. In principle, entanglement is not a necessary resource for reliable decoherence-driven measurement, while the presence of quantum correlations beyond entanglement is.