The Division is engaged in the production of luminescent materials with potential applications in optoelectronics, photonics, telecommunications and studies of their dielectric and optical properties.



  • Preparation and studies of properties of new luminescent materials useful for applications in optoelectronics, photonics and telecommunications.
  • Investigation of transfer of excitation energy responsible for the Stokes and anti-Stokes emission in phosphors containing lanthanide ions and transition metals.
  • Studies of matrix-activator interactions and interconfigurational transitions in scintillation materials and high-energy radiation to visible light converters.
  • Testing of emission properties of nanomaterials in the form of nanoparticles, nanoceramics and thin layers in relation to their morphology and particle size.
  • Studies of dynamics of the excited states and the mechanisms of interaction of optically active impurities in single crystals of oxide and fluoride, which are able to generate light and are useful as active laser centers.
  • Testing of organo-metallic with of ferroelectric, multiferroic and luminescent properties (study of phonon, dielectric properties, emission mechanisms and phase transitions induced with temperature and pressure).
  • Investigation of occupying and relaxation of excited states of lanthanide in dielectric matrices induced by ultrashort light pulses.
  • Studies of optical, structural and surface properties of biomaterials activated with rare earth ions.
  • Investigation of laser-induced white emission in nanocrystalline materials of lanthanide compounds.
  • Design of chemical architecture and properties of the luminescent nanosize sensors activated with rare earth ions.

Division structure:

Group for Spectroscopy of Laser Materials 
Production and testing of new laser materials.

Group for Spectroscopy of Excited States
new optoelectronic materials. Interaction of light with biological systems.

Important publications in 2005-2015:

  • Ł. Marciniak, A. Bednarkiewicz, D. Kowalska, and W. Stręk:  A New Generation of Highly Sensitive Luminescent Thermometers Operating in Optical Window of Biological Tissues. J. Mater. Chem. C 4 (2016) 5559−5563.
  • K. Prorok, M. Pawlyta, W. Stręk, and A. Bednarkiewicz:  Energy Migration Up-conversion of Tb3+ in Yb3+ and Nd3+ Co-doped Active-Core/Active-Shell Colloidal Nanoparticles.  Chem. Mater. 28 (2016) 2295−2300.
  • W. Stręk, B. Cichy, L. Radosiński, P. Głuchowski, Ł. Marciniak, M. Łukaszewicz, and D. Hreniak:  Laser-Induced White Light Emission from Graphene Ceramics ― Opening a  Band Gap in Graphene.  Light Sci. Appl. 4 (2015) e237 (8).
  • W. Ryba-Romanowski, B. Macalik, and M.Berkowski:  Down- and Up-conversion of Femtosecond Light Pulse Excitation into Visible Luminescence in Cerium-Doped Lu2SiO5–Gd2SiO5 Solid Solution Crystals Co-doped with Sm3+ or Dy3+.  Opt. Express 23 (2015) 4552−4562.
  • M. Mączka, A. Sieradzki, B. Bondzior, P. Dereń, J. Hanuza, and K. Hermanowicz:  Effect of Aliovalent Doping on the Properties of Perovskite-Like Multiferroic Formats.  J. Mater. Chem. C 3 (2015) 9337−9345.
  • M. Mączka, A. Pietraszko, B. Macalik, and K. Hermanowicz:  Structure, Phonon Properties, and Order–Disorder Transition in the Metal Formate Framework of [NH4][Mg(HCOO)3].  Inorg. Chem. 53 (2014) 787−794.
  • M. Mączka, A. G. Souza Filho, W. Paraguassu, P. T.C . Freire, J. Mendes Filho, and J. Hanuza:  Pressure-Induced Structural Phase Transitions and Amorphization in Selected Molybdates and Tungstates.  Progr. Mater. Sci. 57 (2012) 1335−1381.
  • W. Ryba-Romanowski, G. Dominiak-Dzik, P. Solarz, and R. Lisiecki:  Transition Intensities and Excited State Relaxation Dynamics of Dy3+ in Crystals and Glasses:  A  Comparative Study.  Opt. Mater. 31 (2009) 1547−1554.
  • W. Stręk, Ł. Marciniak, A. Bednarkiewicz, A. Łukowiak, R. Wiglusz, and D. Hreniak:  White Emission of Lithium Ytterbium Tetraphosphate Nanocrystals.  Opt. Express 19 (2011) 14083−14092.
  • W. Stręk, Ł. Marciniak, D. Hreniak, and A. Łukowiak:  Anti-Stokes Bright Yellowish Emission of NdAlO3 Nanocrystals. J. Appl. Phys. 111 (2012) 024305 (6).
  • P. J. Dereń, and K. Lemański: On tuning the spectroscopic properties of LaAlO3:Pr3+ nanocrystallites. J. Luminescence 131 (2011) 445.
  • P. J. Dereń, D. Stefańska, M. Ptak, M. Mączka, W. Walerczyk, and G. Banach: Origin of Violet-Blue Emission in Ti-Doped Gahnite. J. Am. Ceram. Soc., 1–7 (2014).
  • A. Watras, A. Matraszek, P. Godlewska, I. Szczygieł, J. Wojtkiewicz, B. Brzostowski, G. Banach, J. Hanuza, and P. J. Dereń: The role of the Ca vacancy in the determination of the europium position in the energy gap, its valence state and spectroscopic properties in KCa(PO3)3. Phys. Chem. Chem. Phys.16 (2014) 5581.
  • P. J. Dereń, A. Watras, A. Gągor, and R. Pązik: Weak Crystal Field in Yttrium Gallium Garnet (YGG) Submicrocrystals Doped with Cr3+. Cryst. Growth Des. 12 (2012) 4752.


  • FLS980 Edinburgh Instruments spectrophotometer in Czerny-Turner configuration with VIS and NIR detectors for measurements of excitation spectra, emission and kinetics of luminescence in a wide range of temperatures (77-300 K).
  • JobinYvon THR1000 monochromator with photomultipliers (R928, R406) with the optical range: 300-2000 nm, resolution: 0.01 nm (VIS).
    Pulsed Nd: YAG Laser System LS-2137 / 2M, basic wavelength FF (1064 nm), the second harmonic SH (532 nm), and a generator of harmonics (SH / 532 nm, TH / 355 nm, FH / 266 nm) -- LS-2137 / 2M add-on for laser system, Ti3 +: Al2O3 add-on using Nd: YAG laser to get the laser radiation in the range of 345-500 nm and 690-1000 nm.
  • Renishaw inVia Raman microscope to study Raman spectra equipped with a CCD camera as a detector and laser lines 488, 514 and 830 nm as the excitation source, allows the measurement from a surface of less than 1 micron, can explore the spectrum in the range of 10-3200 cm-1 in the temperature range 77-800 K (LINKAM THMS600 temperature add-on).
  • Olympus Fluoview FV1200 two-photon confocal microscope allowing for optical observation of cuts of samples analyzing the light coming from a selected plane and eliminating the light from layers located above or below; it is possible to analyze optical cuts located on the surface or inside the sample in real-time for constructing three-dimensional images of objects under study and evaluation of their aplication potential.
  • Coherent Libra-S-laser -- femtosecond laser (wavelength 800 nm, pulse width of less than 100 fs and energy of 1 mJ at 1 kHz repetition rate). The Libra system consists of five modules, ie. the main laser (Vitesse: Ti-sapphire laser in combination with Coherent Verdi laser), YLF: Nd pumping laser, repeater (RA), compression system and digital-to-analog converter (DAC).
  • Coherent OPerA Solo Optical Parametric Oscillator -- two-stage amplifier of white continuum paired with Libra laser. The system allows for generation of pulses in the range of wavelength of 230-2800 nm.
  • Hammamatsu C5680 streak camera with time resolution of better than 50 ps; effective spectral range from 200 to 1000 nm.
  • Agilent CARY 5000 UV-Vis-NIR spectrophotometer used for measuring absorption in the spectral range 3300-175 nm, equipped with PbSmart NIR detector allowing to measure at longer wavelengths in the infrared range. Resolution NIR <0.2 nm and UV-Vis <0.05 nm.
  • Surelite I-10 Continuum pulsed Nd: YAG laser (λ '= 1064 nm, P = 4.6, λ' = 532 nm, p = 2.4, λ '' '= 355 nm, P = 0.9 W).
  • Surelite Continuum Optical Parametric Oscillator working in the wavelength range of 400-2000 nm.
  • Dongwoo Optron monochromator system -- three-grating monochromator DM711 and two-grating monochromator DM158i.
  • Station for measuring the dielectric properties of solids in the temperature range 77-300 K, and 300-1000 K.
  • Nicolet iN10 Standalone FT-IR microscope with measuring range of 7600-400 cm-1.
  • Biorad 575C FT-IR spectrometer, measuring range 4000-30 cm-1.
  • 100/S Bruker FT-Raman spectrometer, measuring range 4000-80 cm-1.
  • SSF-01 Spectrofluorimeter for measuring the emission spectra and excitation range in visible and near-infrared range.
  • McPherson VUV spectrophotometer with halogen and deuterium lamps, allowing for measurements of excitation spectra, transmission and emission in the range of 120-1700 nm.
  • Hamamatsu C9920-02G system for measuring absolute quantum emission efficiency.
  • Tunable Ti-Saphire pulse laser with the second harmonic (working range 980-700 nm, and 480-360 nm) driven by the second harmonic Nd: YAG laser (pulse width 7 ns).