Accessibility Tools

Skip to main content

The Institute

Division of Nanomaterials Chemistry and Catalysis

The scientific activity of the Division of Nanomaterials Chemistry and Catalysis is devoted to the study of the relationship between the structure and chemical reactivity of highly dispersed solids. In this activity, we use various methods of production, physicochemical characterization and testing the chemical activity of highly dispersed materials (nanomaterials). The results of our research allow us to better understand how the structure of nanoparticles (shape, size and surface condition) affects their interaction with gases and the carrier surface. The obtained basic knowledge is essential in the process of developing new or improving the existing heterogeneous catalysts.

OChNiK foto new

The head of the Department is dr Hab. Małgorzata Małecka.

Research topics

  • Design and fabrication of new nanostructured materials for applications in catalysis.
    The unconventional methods of synthesis used by us: pressure (solvothermal), combustion and using microemulsions, enable us to obtain materials with a unique morphology and high specific surface area. In particular, these are oxide materials with a hierarchical structure (γ-Al2O3, mesoporous SiO2, doped CeO2), carbon materials with a defined porous structure, as well as complex systems containing metal nanoparticles deposited on such materials. Hierarchical materials, due to their structure (architecture), exhibit higher thermal stability and reactivity than their unstructured counterparts or solid materials. The characteristics of the obtained materials include microstructure studies using transmission and scanning electron microscopy and X-ray diffraction, as well as texture (measurement of specific surface area and porous structure).
  • Mechanisms of active phase-carrier interactions in heterogeneous catalysts.
    Metal-carrier interactions (chemical and electronic) to a large extent determine the properties of heterogeneous catalysts, such as metal dispersion as well as activity, selectivity and especially the stability of the catalyst. We conduct research for both real (powders) and model (thin layers) systems, with particular emphasis on in-situ methods (e.g. NAP-XPS).
  • Chemical reactivity of nanomaterials.
    Research concerns chemisorption of reactive gases (H2, O2, CO) and model catalytic reactions important for environmental protection (oxidation of light hydrocarbons and CO, hydrogen production) on nanoparticle systems. We also study reactions in the solid phase at the nanoparticle-substrate interface. Reactions such as sintering, redispersion or formation of chemical compounds at phase boundaries determine the stability and activity of catalysts and layered systems.
  • Designing new catalytic systems dedicated for demanding reactions.
    Fundamental research into the microstructure and activity of model catalytic systems is used to develop new catalysts for demanding chemical reactions.

Laboratory of Electron Microscopy:
The laboratory is the basic equipment base of the Department in the field of testing the microstructure of materials. A special role in the study of highly dispersed systems (including catalysts) is played by high-resolution transmission electron microscopy, which provides unique information about the morphology and crystal structure of particles with sizes of single nanometers. The laboratory also performs services in the field of TEM, SEM and X-ray microanalysis (EDS) for employees of the Institute and other scientific institutions.

Selected publications

2022

  • Bezkrovnyi O.,  Vorokhta M.,  Pawlyta M.,  Ptak M.,  Piliai L.,  Xie X.,  Dinhová T.,  Khalakhan I.,  Matolínová I.,  Kępiński L.:  In situobservation of highly oxidized Ru species in Ru/CeO2catalyst under propane oxidation, Journal of Materials Chemistry A: materials for energy and sustainability, Royal Society of Chemistry, vol. 10, nr 31, 2022, s. 16675-16684.
  • Bezkrovnyi O.,  Bruix A.,  Blaumeiser D.,  Piliai L.,  Schötz S.,  Bauer T.,  Khalakhan I.,  Skála T.,  Matvija P., Kraszkiewicz ,  Pawlyta M.,  Vorokhta M.,  Matolínová I.,  Libuda J.,  Neyman K.,  Kępiński L.:  Metal–Support Interaction and Charge Distribution in Ceria-Supported Au Particles Exposed to CO, Chemistry of Materials, American Chemical Society, vol. 34, nr 17, 2022, s. 7916-7936.
  • Kraszkiewicz P.,  Małecka M.,  Miśta W.:  Sintering-resistant and highly active Au/SBA-15 catalyst for carbon monoxide oxidation, Microporous and Mesoporous Materials, vol. 346, 2022, 112338.
  • Woźniak P.,  Małecka M.,  Chinchilla L.,  Trasobares S.:  3D hierarchically structured Ce1-xGdxO2-x/2 mixed oxide particles: the role of microstructure, porosity and multi-level architecture stability in soot and propane oxidation, Materials Research Bulletin, vol. 151, 2022, 111816.
  • Woźniak P.,  Małecka M.,  Kraszkiewicz P.,  Miśta W.,  Bezkrovnyi O.,  Chinchilla L.,  Trasobares S.:  Confinement of nano-gold in 3D hierarchically structured gadolinium-doped ceria mesocrystal: synergistic effect of chemical composition and structural hierarchy in CO and propane oxidation, Catalysis Science & Technology, 12, 2022, 7082-7113.
  • Woźniak P.,  Kraszkiewicz P.,  Małecka M.:  Hierarchical Au/CeO2systems – influence of Ln3+dopants on the catalytic activity in the propane oxidation process, CrystEngComm, vol. 24, nr 36, 2022, s. 6408-6420.

2021

  • Adamska K.,  Smykała S.,  Zieliński S.,  Szymański D.,  Hojeńska A.,  Stelmachowski P.,  Kotarba A.,  Okal J.:  Oxidation of soot over supported RuRe nanoparticles prepared by the microwave-polyol method, Reaction Kinetics Mechanisms and Catalysis, vol. 134, nr 1, 2021, s. 221-242.
  • Bezkrovnyi O.,  Kraszkiewicz P.,  Miśta W.,  Kępiński L.:  The Sintering of Au Nanoparticles on Flat {100}, {111} and Zigzagged {111}-Nanofacetted Structures of Ceria and Its Influence on Catalytic Activity in CO Oxidation and CO PROX, Catalysis Letters, vol. 151, nr 4, 2021, s. 1080-1090.
  • Kępiński L.,  Lisiecki R.,  Ptak M.:  Synthesis and characterization of a hexagonal polymorph of GdAlO3, Journal of Alloys and Compounds, vol. 856, 2021, s. 1-10.
  • Ledwa K.,  Kępiński L.,  Pawlyta M.:  Regenerability of complex (PdO)xPd0.05-xCe0.95O2-y catalyst stabilized on functionalized alumina surface, Materials Research Bulletin, vol. 141, 2021, s. 1-14.
  • Małecka M.,  Woźniak P.:  Hierarchical macroparticles of ceria with tube-like shape – synthesis and properties, CrystEngComm, vol. 23, nr 38, 2021, s. 6743-6754.
  • Okal J.,  Adamska K.:  Thermal Stability of Ru–Re NPs in H2 and O2 Atmosphere and Their Activity in VOCs Oxidation: Effect of Ru Precursor, Catalysis Letters, vol. 152, nr 1, 2021, s. 55-74.
  • Piskorska-Hommel E.,  Winiarski M.,  Kurnatowska M.:  The low temperature reducibility of Ce4+ ions in Ce0.7Yb0.2Pd0.1O2-δ: in situ XANES study, Materials Chemistry and Physics, vol. 257, 2021, s. 1-5.

2020

  • Bezkrovnyi O.,  Blaumeiser D.,  Vorokhta M.,  Kraszkiewicz P.,  Pawlyta M.,  Bauer T.,  Libuda J.,  Kępiński L.:  NAP-XPS and in Situ DRIFTS of the Interaction of CO with Au Nanoparticles Supported by Ce1- xEuxO2 Nanocubes, The Journal of Physical Chemistry Part C: Nanomaterials, Interfaces and Hard Matter, American Chemical Society, vol. 124, nr 10, 2020, s. 5647-5656.
  • Bezkrovnyi O.,  Vorokhta M.,  Małecka M.,  Miśta W.,  Kępiński L.:  NAP-XPS study of Eu3+ → Eu2+and Ce4+ → Ce3+reduction in Au/Ce0.80Eu0.20O2catalyst, Catalysis Communications, vol. 135, 2020, 105875.
  • Kępiński L.,  Kraszkiewicz P.:  Stability of nanocrystalline Ce-Gd mixed oxide on Al2O3 support, Colloids and Surfaces A-Physicochemical and Engineering Aspects, Elsevier BV, vol. 596, 2020, 124742.
  • Ledwa K.,  Kępiński L.,  Pawlyta M.:  Atomically dispersed cerium species in NMxCe1-xO2/Al2O3(NM = Rh, Ru) catalysts, Materials Research Bulletin, vol. 122, 2020, 110673.
  • Ledwa K.,  Kępiński L.,  Pawlyta M.:  Reversibility of the Ex-Solution↔Redispersion Processes of Rhodium in Rh0.15Ce0.85O2-y Nanoparticles Deposited on Functionalized Alumina, ChemNanoMat, vol. 6, nr 8, 2020, s. 1260-1269.
  • Ledwa K.,  Kępiński L.,  Ptak M.,  Szukiewicz R.:  Ru0.05Ce0.95O2-y deposited on functionalized alumina as a smart catalyst for propane oxidation, Applied Catalysis B: Environmental, Elsevier BV, vol. 274, 2020, 119090.
  • Małecka M.,  Matus K.,  Woźniak P.:  Decoration of Cube-Like Ceria Crystals by Well-Dispersed Au Nanoparticles: Surface Influence, ChemistrySelect, vol. 5, nr 10, 2020, s. 2871-2877.
  • Piskorska-Hommel E.,  Kowalska D.,  Kraszkiewicz P.,  Kurnatowska M.:  In situ XAFS study of highly reducible mixed oxide catalysts Ce0.9Pd0.1O2-δ and Ce0.7Yb0.2Pd0.1O2-δ, Journal of Alloys and Compounds, vol. 831, 2020, 154703.
  • Woźniak P.,  Kraszkiewicz P.,  Małecka M.:  Divergent influence of 1 1 1vs.1 0 0 crystal planes and Yb3+dopant on CO oxidation paths in mixed nano-sized oxide Au/Ce1−xYbxO2−x/2(x= 0 or 0.1) systems, CrystEngComm, vol. 22, nr 35, 2020, s. 5828-5840.
  • Woźniak P.,  Miśta W.,  Małecka M.:  Function of various levels of hierarchical organization of porous Ce0.9REE0.1O1.95mixed oxides in catalytic activity, CrystEngComm, vol. 22, nr 35, 2020, s. 5914-5930.

2019

  • Adamska K.,  Okal J.,  Tylus W.:  Stable bimetallic Ru-Mo/Al2O3catalysts for the light alkane combustion: Effect of the Mo addition, Applied Catalysis B: Environmental, Elsevier BV, vol. 246, 2019, s. 180-194.
  • Bezkrovnyi O.,  Kraszkiewicz P.,  Krivtsov I.,  Quesada J.,  Ordóñez S.,  Kępiński L.:  Thermally induced sintering and redispersion of Au nanoparticles supported on Ce1-xEuxO2nanocubes and their influence on catalytic CO oxidation, Catalysis Communications, vol. 131, 2019, 105798.
  • Kępiński L.,  Miśta W.,  Szymański D.:  The mixed-valence Ce4Al2O10aluminate, Solid State Ionics, Elsevier BV - North-Holland, vol. 331, 2019, s. 1-5.
  • Kurnatowska M.,  Piskorska-Hommel E.,  Kraszkiewicz P.,  Winiarski M.:  New doubly doped cerium oxide Ce1-x-yYbyPdxO2-δ: The effect of ytterbium doping on stabilization of reduced palladium species on doped ceria oxide, Materials Chemistry and Physics, vol. 229, 2019, s. 49-55.
  • Ledwa K.,  Kępiński L.,  Pawlyta M.:  Thermal stability and propane combustion activity of Rh: XCe1- xO2-ynanoparticles deposited on functionalized alumina, Catalysis Science & Technology, vol. 9, 2019, s. 4633-4644.
  • Małecka M.,  Kraszkiewicz P.,  Bezkrovnyi O.:  Catalysis by shapely nanocrystals of the Ce1−xYbxO2−x/2mixed oxides — Synthesis and phase stability, Materials Characterization, vol. 155, 2019, 109796.
  • Małecka M.:  The Phosphates - Skipped Reaction Products in the Octahedron-like Yb and Lu-Doped Ceria Synthesis., ChemistrySelect, vol. 4, 2019, s. 316-320.

2018

  • Bezkrovnyi O.,  Małecka M.,  Lisiecki R.,  Ostroushko V.,  Thomas A.,  Gorantla S.,  Kępiński L.:  The effect of Eu doping on the growth, structure and red-ox activity of ceria nanocubes, CrystEngComm, vol. 20, 2018, s. 1698-1704.
  • Bezkrovnyi O.,  Kraszkiewicz P.,  Ptak M.,  Kępiński L.:  Thermally induced reconstruction of ceria nanocubes into zigzag {111}-nanofacetted structures and its influence on catalytic activity in CO oxidation, Catalysis Communications, vol. 117, 2018, s. 94-98.
  • Dobosz J.,  Cichy M.,  Zawadzki M.,  Borowiecki T.:  Glycerol steam reforming over calcium hydroxyapatite supported cobalt and cobalt-cerium catalysts, Journal of Energy Chemistry, vol. 27, 2018, s. 404-412.
  • Kępiński L.:  The missing Ce member of Ln4Al2O9family of aluminates, Journal of the American Ceramic Society, vol. 101, 2018, s. 1356-1360.
  • Kraszkiewicz P.,  Miśta W.:  Thermally stable SBA-15 supported sub-2 nm gold clusters, highly active in room temperature CO oxidation: Effect of thermal pretreatment, Catalysis Communications, vol. 110, 2018, s. 14-17.
  • Ledwa K.,  Pawlyta M.,  Kępiński L.:  RuxCe1-xO2-ynanoparticles deposited on functionalized Γ-Al2O3as a thermally stable oxidation catalyst, Applied Catalysis B: Environmental, Elsevier BV, vol. 230, 2018, s. 135-144.
  • Małecka M.:  The Crystallization Mechanism of the Octahedron-Like Ce1-xYbxO2-x/2and Ce1-xLuxO2-x/2Ceria-Based Mixed Oxide., ChemistrySelect, vol. 3, 2018, s. 12012-12016.
  • Okal J.,  Zawadzki M.,  Kraszkiewicz P.,  Adamska K.:  Ru/CeO2catalysts for combustion of mixture of light hydrocarbons: Effect of preparation method and metal salt precursors, Applied Catalysis A-General, Elsevier BV, vol. 549, 2018, s. 161-169.
  • Winiarski M.,  Kurnatowska M.:  Electronic structure of Ce1−xMxO2, where M = Rh, Pd, by MBJLDA calculations, Solid State Sciences, vol. 86, 2018, s. 34-37.

Research Projects

Source

Title

PI

Period

NCN PRELUDIUM 14

Morphology and the presence of defects at exposed surfaces of Ce1-xEuxO2-y crystallites as factors determining thermal stability and catalytic activity of deposited Au nanoparticles.

Oleksii Bezkrovnyi

2018-2020

FNP

Searching for novel catalysts for soot emission abatement from automotive exhaust gases-bimetallic Ru-Re and Ru-PT nanoparticles supported on oxide carriers

Katarzyna Adamska

2018-2020

NCN SONATA 11

Studies on the effect of the defect content at the surface of Ce1-xLnxO2-y mixed oxide on the shape and size of deposited metal nanoparticles and their orientation relative to the support.

Małgorzata Małecka

2017-2020

NCN PRELUDIUM 12

Optimization of the synthesis of intelligent, thermally stable and highly dispersed catalytic systems M-CeO2-Al2O3 (M=Pd, Rh, Ru).

Karolina Ledwa

2017-2019

NCN SONATA 10

Studies on the process of self-organization of nanocrystalline catalysts based on cerium oxide.

Michalina Kurnatowska

2016-2020

NCN OPUS 4

Studies on the mechanisms of stabilization of ruthenium nanoparticles in Ru-MOx/support systems, where M – rhenium or molybdenum.

Janina Okal

2013-2016

NCN OPUS 1

Structural and chemical stability of Ce1-xLnxO2-y (Ln - lanthanide) nanoparticles at oxide supports.

Leszek Kępiński

2011-2014

NCN PRELUDIUM 1

Structure, stability and catalytic activity of Ce1-xMxO2-y (M-transition metal) mixed oxide nanoparticles.

Michalina Kurnatowska

2011-2013

UE  GreenAir, ACP8-GA-2009-233862

Generation of hydrogen by kerosene reforming via efficient and low emission new alternative, innovative, refined technologies for aircraft application

Włodzimierz Miśta

2009-2013

KBN 37

Nanostructured ruthenium catalysts for low temperature oxidation of light hydrocarbons

Janina Okal

2009-2011

KBN 33

Structure and reactivity of highly dispersed lanthanide oxides and their compounds.

Leszek Kępiński

2007-2009

KBN 30

Development of the method of determination of metal dispersion in the supported ruthenium catalysts.

Janina Okal

2006-2008

Basic equipment

  • Transmission electron microscope Philips CM20 Super Twin
  • Scanning electron microscope Philips 515 with EDS spectrometer
  • Scanning electron microscope FEI Nova NanoSEM 230 with EDX spectrometer and EBSD system
  • Automatic gas adsorption testing apparatus ASAP 2020 C (Micromeritics)
  • Automatic sorptometer Sorptomatic 1900 (Fisons Instruments)
  • Automatic analyzer of temperature programmed reactions Autochem II 2920 (Micromeritics)
  • Gas chromatograph Perkin-Elmer ARTEL Clarus 500
  • Gas chromatograph Perkin-Elmer Clarus 680 with MS
  • Derivatograph TG-DTA (MOM Budapest)
  • Microwave pressurized reactor ERTEC
  • Gamma radiation source 60Co MRX-100

Staff:

unia flaga