Accessibility Tools

Skip to main content

The Institute

Division of Low Temperature and Superconductivity

Division of Low Temperature and Superconductivity (DLTS) is the successor of the Department of Low Temperatures, from which the Institute of Low Temperature and Structural Research originated, when it was brought into existence on 1 October 1966. Since the beginning,  fundamental interests of the Division have been superconductivity, thermal properties of solids and the development and use of cryogenic techniques. The current list of subjects does not differ much from that, focusing on high-temperature superconductivity research, transport of heat in solids and cryocrystals. The place of cryotechnology has been taken over by cryothermometry, which resulted in founding the Laboratory of Temperature Standard at DLTS, which is a depositary of the national temperature standard in the Institute.

Pracownicy Oddziału Niskich Temperatur i Nadprzewodnictwa

The head of the Department is dr hab. eng. Jacek Ćwik.

Research:

  • The formation and propagation of thermal excitations in crystals created from noble gases and simple molecular gases.
  • Research on scattering of phonons in nanocomposite materials obtained on the basis of simple van der Waals crystals.
  • Mechanisms of heat transfer in molecular crystals and new materials for electro-optical applications.
  • Examination of coexistence of superconductivity and magnetism in doped compounds such as AFe2As2 for A = Ba, Eu, Ca (single crystals, for example with cobalt substituting iron, etc.).
  • Studies of the magnetic properties and search for superconductivity in materials with low carrier density (twining planes in crystals of bismuth or topological insulators, GaN nanoceramics,  plane separating SrTiO3 and LaAlO3).
  • Anisotropy of  thermoelectric coefficients upon the application of uniaxial pressure, allowing detwinning of single crystal samples and examination of the nematic state of iron-based superconducting materials.
  • The dynamics of magnetic vortices in single crystals of doped high-temperature superconductors.
  • Phenomena related to interaction between superconductivity and magnetism in spin valve nano-sized heterostructures.
  • Mechanisms of dissipation of electromagnetic energy in commercial, high-temperature superconducting composites.
  • Research on metrological characteristics of model platinum thermometers of new generation in low temperatures.
  • Magnetocaloric effect, magnetic properties and magnetocrystalline anisotropy studies of single crystals of intermetallic compounds and rare-earth metals.
  • Magnetostriction studies of single crystals of intermetallic compounds and rare-earth metals.
  • Study of magnetocaloric effect and magnetic properties of magnetic materials with magnetostructural transitions.
  • Study of magnetocaloric effect and magnetic shape memory effect in Heusler alloys.

DIVISION'S WEBSITE

The Division also includes the Laboratory of Temperature Standard, which is an accredited national calibration laboratory. It performs calibration of temperature measurements in the range from 0oC to 156oC, using the fact that the Institute is the depositary of the national standard of temperature in the range from 13.8033K to 273.16K.

Important publications:

  1. L.M. Tran, A.J. Zaleski, Z. Bukowski „Reentrant resistivity due to the interplay of superconductivity and magnetism in Eu0.73Ca0.27(Fe0.87Co0.13)2As2” Physical Review B 109 (2024) 014509
  2. H. Liang, D. Patel, M. Shahbazi, A. Morawski, D. Gajda, M. Rindfleisch, R. Taylor, Y. Yamauchi,  A. Hossain „Recent progress in MgB2 superconducting joint technology” Journal of Magnesium and Alloys 11 (2023) 2217
  3. P. Stachowiak, M. Babij, D. Szewczyk, Z. Bukowski „Anisotropies of thermal conductivity of SrIr4In2Ge4 and EuIr4In2Ge4 crystals: Manifestation of coupling of phonons with europium spin 1D fluctuations?” Journal of Chemical Physics 159 (2023) 19
  4. R. Veltcheva, C.  Garcia Izquierdo, R. Rusby, J. Pearce, E. Gomez, A. Kowal „Investigations of Type 3 non-uniqueness in standard platinum resistance thermometers between 83 K and 353 K" Measurement 216 (2023) 112863
  5. F. Li, D. Zhao, J. Liu. A. Kamantsev, E. Dilmieva, I. Koshkidko, C. Zhu, L. Ma, C. Zhen, D. Hou „Entropy change of magnetostructural transformation and magnetocaloric properties in a Ni50Mn18.5Ga25Cu6.5 Heusler alloy" Materials Research Bulletin 158 (2023) 112050
  6. O. Kryvchikov, Y.V. Horbatenko, O.A. Korolyuk, O.O. Romantsova, O.O. Kryvchikov, D. Szewczyk, A. Jeżowski „Exponential approximation of the coherence contribution to the thermal conductivity of complex clathrate-type crystals" Materialia 32 (2023) 101944
  7. A. P. Kamantsev, I. Koshkidko, E. O. Bykov, T. Gottschall, A. G. Gamzatov, A. M. Aliev, A. G. Varzaneh, P. Kameli „Giant irreversibility of the inverse magnetocaloric effect in the Ni47Mn40Sn12.5Cu0.5 Heusler alloy” Applied Physics Letters 123 (2023) 20
  8. J. Ćwik, I. Koshkidko, B. Weise, A. Czernuszewicz „High-field magnetic and magnetocaloric properties of pseudo-binary Er1−xHoxNi2 (x = 0.25–0.75) solid solutions” Journal of Alloys and Compounds 968 (2023) 172297
  9. V. Nizhankovskiy „Influence of temperature and magnetic field on optical absorption spectra of Nd3+- doped Gd3Ga5O12" Journal of Luminescence 263 (2023) 120025
  10. D. Gajda, A. Zaleski, A. Morawski, M. Babij, D. Szymański, M. Rindfleisch, D. Patel, M.S.A. Hossain „Influence of annealing temperature and isostatic pressure on microstructure and superconducting properties of isotopic Mg11B2 wires fabricated by internal Mg diffusion method” Journal of Alloys and Compounds 933 (2023) 167660
  11. I. Krivchikov, A. Jeżowski, D. Szewczyk, O.A. Korolyuk, О.О. Romantsova, L.M. Buravtseva, C. Cazorla, J.Ll. Tamarit „The role of optical phonons and anharmonicity in the appearance of the Boson peak-like anomaly in fully ordered molecular crystals” The Journal of Physical Chemistry Letters 13 (2022) 506
  12. Y. Koshkid'ko, E.T. Dilmieva, A.P. Kamantsev, J. Ćwik, K. Rogacki, A.V. Mashirov, V.V. Khovaylo, C.S. Mejia, M.A. Zagrebin, V.V. Sokolovskiy, V.D. Buchelnikov, P. Ari-Gur, P. Bhale, V.G. Shavrov, V.V. Koledov „Magnetocaloric effect and magnetic phase diagram of Ni-Mn-Ga Heusler alloy in steady and pulsed magnetic fields” Journal of Alloys and Compounds 904 (2022) 164051
  13. S. Kolev, B. Georgieva, T. Koutzarova, K. Krezhov, C. Ghelev, D. Kovacheva, B. Vertruyen, R. Closset, L.M. Tran, M. Babij, A.J. Zaleski „Magnetic Field Influence on the Microwave Characteristics of Composite Samples Based on Polycrystalline Y-Type Hexaferrite” Polymers 14 (2022) 4114
  14. Yetis¸, D. Avcı, F. Karaboga, C. Aksoy, D. Gajda, E. Martínez, F. M. Tanyıldızı , A. Zaleski, M. Babij, L. M. Tran, L. A. Angurel, G. F. de la Fuente, I. Belenli „Transport and structural properties of MgB2 /Fe wires produced by redesigning internal Mg diffusion process” Superconductor Science and Technology 35 (2022) 045012
  15. M. Simenas, S. Balciunas, J.N. Wilson, S. Svirskas, M. Kinka, M. Ptak, V. Kalendra, A. Gagor, D. Szewczyk, A. Sieradzki, R. Grigalaitis, A. Walsh, M. Maczka, J, Banys „Phase Diagram and Cation Dynamics of Mixed MA1–xFAxPbBr3 Hybrid Perovskites” Chemistry of Materials 33 (2021) 5926
  16. Zhang, I. Milisavljevic, K. Grzeszkiewicz, P. Stachowiak, D. Hreniak, Y. Wu „New Optical Ceramics: High-entropy sesquioxide X2O3 multiwavelength emission phosphor transparent ceramics” Journal of the European Ceramic Society 41 (2021) 3621
  17. A. Filatova-Zalewska, Z. Litwicki, K. Moszak, W. Olszewski, K. Opołczyńska, D. Pucicki, J. Serafińczuk, D. Hommel, A. Jeżowski „Anisotropic thermal conductivity of AlGaN/GaN superlattices” Nanotechnology 32 (2021) 075707
  18. J. Ćwik, Y. Koshkid’ko, K. Nenkov, A. Mikhailova, M. Małecka, T. Romanova, N. Kolchugina, and N. A. de Oliveira „Experimental and theoretical analysis of magnetocaloric behavior of Dy1−xErxNi2 intermetallics (x = 0.25, 0.5, 0.75) and their composites for low-temperature refrigerators performing an Ericsson cycle” Physical Review B  103 (2021) 214429
  19. A. Kowal, T. Merlone, Sawiński “Long-term stability of meteorological temperature sensors” Meteorological Applications 27 (2020), Issue 1,
  20. P. Ciechanowicz, S. Gorantla, E. Zdanowicz, J.-G. Rousset, D. Hlushchenko, K. Adamczyk, D. Majchrzak, R. Kudrawiec, D. Hommel „Arsenic-Induced Growth of Dodecagonal GaN Microrods with Stable a-Plane Walls” Advanced Optical Materials 9 (2021) 2001348
  21. M. Simenas, S. Balciunas, J.N. Wilson, S. Svirskas, M. Kinka, A. Garbaras, V. Kalendra, A. Gągor, D. Szewczyk, A. Sieradzki, M. Mączka, V. Samulionis, A. Walsh, R. Grigalaitis, J, Banys „Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites” Nature Communications 11 (2020) 5103
  22. A. L. Solovjov, E.V. Petrenko, L.V. Omelchenko, E. Nazarova, K. Buchkov, K. Rogacki „Fluctuating Cooper pairs in FeSe at temperatures exceeding double Tc” Superconductor Science and Technology 34 (2021) 015013
  23. D. Rybicki, M. Sikora, J. Stępień, Ł. Gondek, K. Goc, T. Strączek, M. Jurczyszyn, C. Kapusta, Z. Bukowski, M. Babij, M. Matusiak, M. Zając „Direct evidence of uneven dxz and dyzorbital occupation in the superconducting state of iron pnictide” Physical Review B 102 (2020) 195126
  24. L. Konopko, A. Nikolaeva, T.E. Huber,  K. Rogacki „Quantum oscillations in nanowires of topological insulator Bi0.83Sb0.17” Applied Surface Science 526 (2020) 146750

Apparatus:

Devices for sample synthesis and initial characterization of materials

  • Scanning electron microscope Philips 515 with energy spectrometer EDAX PV9800.
  • Muffle and tube furnaces with working temperatures ranging from 1400 to 1600 °
  • Arc melting furnace for sample preparation
  • Two-zone tube furnace with working temperatures up to 1400°C
  • Tube furnace with the possibility of synthesis in gas flow (e.g. oxygen, ammonia)

Measuring devices

  • PPMS (Physical Property Measurement System) from Quantum Design with a temperature range 1.9 - 400 K and magnetic fields up to 9 T with inserts allowing measurement of:
    • specific heat;
    • AC and DC magnetization (sample extraction method);
    • DC magnetization (torque method);
    • thermal conductivity(stationary and continuous method);
    • Seebeck coefficient;
    • AC and DC electrical conductivity (with rotator);
    • AC and DC electrical conductivity under pressure up to 3GPa;
    • thermo-  and galvanomagnetic effects (with rotator).
  • HOT DISK® TPS 3500 from HOT DISK Instruments for measuring the thermophysical properties implementing the transient heat plane source method in the temperature range from -35°C (with circular) up to 500°C (with furnace) enabling the determination of: thermal conductivity; thermal diffusivity; thermal effusivity; and volumetric specific heat capacity.
  • Helium cryostat for determination of thermal conductivity of cryocrystals with stationary method in temperatures from 1.5 up to 50K
  • Set up for measuring thermal conductivity and electrical resistance of solids in the range of 4.2 K – 300 K
  • 3 omega experimental system for determination of thermal conductivity of thin layers (both in-plane and cross-plane) in temperature range 100 – 325 K.
  • Research station for calibration of thermometers at fixed points of the temperature scale from 13 K to 430 K with uncertainty of less than 1 mK.
  • Station for calibration of thermometers using comparative method in a temperature range from 5K to 440oC with an uncertainty of 10 mK.
  • Precise DC and AC resistance bridges for measurements with uncertainty better than 0.1 ppm.
  • Laboratory of Molecular Beam Epitaxy (MBE)  implementing a sophisticated thin film deposition technique in Ultra High Vacuum (UHV) conditions (pressure of 10-9 mbar), enables the deposition of very thin layers of the order of nm with a precisely defined chemical composition and precise distribution of the dopant concentration profile.
  • Bitter magnets with the magnetic field up to 14T enabling:
    • magnetic measurements with a vibrating magnetometer (determination of M(H) dependence at given temperature T and M(T) at given magnetic field H) accuracy ~10-5 emu, temperature range 4.2 – 300 K
    • magnetocaloric effect measurements, including direct determination of the adiabatic temperature change (∆Tad)  and isothermal absorption/heat transfer (ΔQ) during magnetization and demagnetization; measurements of ∆Tad and ΔQ are realized as a function of magnetic field (H) and as a function of temperature (T) at a given initial temperature, with an accuracy of  ~10-2K and ~10-2J respectively, temperature range 4.2 – 350 K.
    • critical parameters determination, e.g. critical temperature, critical current and upper critical field
  • Measurements in an adjustable magnetic field source based on magnetic systems (Halbach cylinder) made of permanent magnets:
    • direct determination of the adiabatic temperature change (∆Tad) with an accuracy of  ~2*10-3K
    • direct determination of the isothermal absorption/heat transfer (ΔQ) with an accuracy of  ~10-4J

field range -1.8 T do +1.8 T; temperature range 4.2 -350 K; both parameters are measured during magnetization and demagnetization, as a function of magnetic field (H) and as a function of temperature (T) at a given initial temperature

  • In-situ studies of magnetostructural transitions in magnetic fields including microstructure studies of samples with magnetostructural transitions using an optical microscope in a Bitter magnet (up to 14 T) or in an adjustable magnetic field source based on magnetic systems (Halbach cylinder) made of permanent magnets (- 1.8 T to +1.8 T); temperature range: 77 – 350 K
  • Lake Shore Cryotronics susceptometer for measurements in temperature range of 4.2 - 300 K and magnetic field up to 9 T and inserts enabling the measurement of:
    • DC and AC magnetization (sample extraction method);
    • DC and AC electrical conductivity;
  • SQUID magnetometer (sensitivity 10-7 emu, temperature range 2 - 300 K)
  • Optical spectrometer (range 300-900 nm, resolution 0.06 nm) and optical insert with quartz fiber beam guide for measurements in high magnetic field (temperature range 4.2 - 300 K)
  • Oxford Instruments susceptometer with temperature range of 1.9 - 350 K and magnetic field up to 9 T and inserts enabling the measurement of:
    • DC and AC magnetization (sample extraction method);
    • DC and AC electrical conductivity;
    • critical currents of superconducting wires and junctions.
  • Oxford Instruments Teslatron with temperature range of 1.8 - 300 K equipped with a 12 T magnet with measuring inserts for:
    • AC and DC electrical conductivity;
    • magnetocaloric effect;
    • thermo- and galvanomagnetic effects.

Staff:

LIST OF DIVISION STAFF

unia flaga