\/svg>","ionicons-filled--link":"<\/svg>"}) Accessibility Tools Invert colors Monochrome Dark contrast Light contrast Low saturation High saturation Highlight links Highlight headings Screen reader Read mode Content scaling 100% Font size 100% Line height 100% Letter spacing 100% Skip to main content PL The Institute The Institute General information Emploees News Scientific News Gender equality plan Address and contact data Research Research profile List of publications Information in BIP Scientific Council Organizational structure GDPR Events Seminars Current seminars List of seminars Conferences Current conferences Past conferences For students Doctoral school General Information Curriculum Recruitment School Council Doctoral Student Council Teaching Doctoral students Mid-term evaluation For students Master theses Student training Visiting the Institute For employees Institute e-mail Eduroam Publication registry Contact us Address and contact data Important phone numbers and emails PL The Institute The Institute General information Emploees News Scientific News Gender equality plan Address and contact data Research Research profile List of publications Information in BIP Scientific Council Organizational structure GDPR Events Seminars Current seminars List of seminars Conferences Current conferences Past conferences For students Doctoral school General Information Curriculum Recruitment School Council Doctoral Student Council Teaching Doctoral students Mid-term evaluation For students Master theses Student training Visiting the Institute For employees Institute e-mail Eduroam Publication registry Contact us Address and contact data Important phone numbers and emails Events Home Events List of seminars Seminar of the Institute of Theoretical Physics of University of Wrocław 12:15, 17-05-12 UWr, pl. Maksa Borna 9, sala 422 Interaction of a quantum field with a rotating heat bathprof. dr hab. Robert AlickiUniwersytet GdańskiThe linear coupling of a rotating heat bath to a quantum field is studied in the framework of the Markovian master equation for the field's non-unitary time evolution. The bath's rotation induces population inversion for the field's low-energy modes. For bosons, this leads to superradiance, an irreversible process in which some of the bath's kinetic energy is extracted by spontaneous and stimulated emission. We find the energy and entropy balance for such systems and apply our results to the theory of black hole radiation. The talk is based on the joint paper with Alejandro Jenkins: http://arxiv.org/abs/1702.06231
Accessibility Tools
The linear coupling of a rotating heat bath to a quantum field is studied in the framework of the Markovian master equation for the field's non-unitary time evolution. The bath's rotation induces population inversion for the field's low-energy modes. For bosons, this leads to superradiance, an irreversible process in which some of the bath's kinetic energy is extracted by spontaneous and stimulated emission. We find the energy and entropy balance for such systems and apply our results to the theory of black hole radiation. The talk is based on the joint paper with Alejandro Jenkins: http://arxiv.org/abs/1702.06231