\/svg>","ionicons-filled--link":"<\/svg>"}) Accessibility Tools Invert colors Monochrome Dark contrast Light contrast Low saturation High saturation Highlight links Highlight headings Screen reader Read mode Content scaling 100% Font size 100% Line height 100% Letter spacing 100% Skip to main content PL The Institute The Institute General information Emploees News Scientific News Gender equality plan Address and contact data Research Research profile List of publications Information in BIP Scientific Council Organizational structure GDPR Events Seminars Current seminars List of seminars Conferences Current conferences Past conferences For students Doctoral school General Information Curriculum Recruitment School Council Doctoral Student Council Teaching Doctoral students Mid-term evaluation For students Master theses Student training Visiting the Institute For employees Institute e-mail Eduroam Publication registry Contact us Address and contact data Important phone numbers and emails PL The Institute The Institute General information Emploees News Scientific News Gender equality plan Address and contact data Research Research profile List of publications Information in BIP Scientific Council Organizational structure GDPR Events Seminars Current seminars List of seminars Conferences Current conferences Past conferences For students Doctoral school General Information Curriculum Recruitment School Council Doctoral Student Council Teaching Doctoral students Mid-term evaluation For students Master theses Student training Visiting the Institute For employees Institute e-mail Eduroam Publication registry Contact us Address and contact data Important phone numbers and emails Events Home Events List of seminars Seminar "Coherence-Correlations-Complexity", Dept. of Theoretical Physics, Wrocław University of Technology 13:15, 16-03-16 Sala 320a bud. A-1, Politechnika Wrocławska Collective emission from quantum dot ensembles: numerical simulation of second order correlationsprof. Paweł MachnikowskiKatedra Fizyki Teoretycznej WPPT PWrI will present a theoretical analysis of the intensity correlation functions for the spontaneous emission from a planar ensemble of self-assembled quantum dots. The evolution of the system is simulated numerically using the quantum jump approach and photon-photon delay time statistics is constructed, approximating the second-order correlation functions of the field. The form of this correlation function in the case of collective emission from a highly homogeneous ensemble qualitatively differs from that characterizing an ensemble of independent emitters (inhomogeneous ensemble of uncoupled dots). The signatures of collective emission are observed also in the case of an inhomogeneous but sufficiently strongly coupled ensemble. Different forms of the correlation functions are observed in the intensity autocorrelations and in cross correlations between various spectral ranges, revealing the quantum state projection associated with the detection event and the subsequent interaction-induced redistribution of occupations. The predicted effect of collective dynamics on the correlation functions appears under various excitation conditions. Thus, the second-order correlation function of the emitted field provides a sensitive test of cooperative effects.
Accessibility Tools
I will present a theoretical analysis of the intensity correlation functions for the spontaneous emission from a planar ensemble of self-assembled quantum dots. The evolution of the system is simulated numerically using the quantum jump approach and photon-photon delay time statistics is constructed, approximating the second-order correlation functions of the field. The form of this correlation function in the case of collective emission from a highly homogeneous ensemble qualitatively differs from that characterizing an ensemble of independent emitters (inhomogeneous ensemble of uncoupled dots). The signatures of collective emission are observed also in the case of an inhomogeneous but sufficiently strongly coupled ensemble. Different forms of the correlation functions are observed in the intensity autocorrelations and in cross correlations between various spectral ranges, revealing the quantum state projection associated with the detection event and the subsequent interaction-induced redistribution of occupations. The predicted effect of collective dynamics on the correlation functions appears under various excitation conditions. Thus, the second-order correlation function of the emitted field provides a sensitive test of cooperative effects.