\/svg>","ionicons-filled--link":"<\/svg>"}) Accessibility Tools Invert colors Monochrome Dark contrast Light contrast Low saturation High saturation Highlight links Highlight headings Screen reader Read mode Content scaling 100% Font size 100% Line height 100% Letter spacing 100% Skip to main content PL The Institute The Institute General information Emploees News Scientific News Gender equality plan Address and contact data Research Research profile List of publications Information in BIP Scientific Council Organizational structure GDPR Events Seminars Current seminars List of seminars Conferences Current conferences Past conferences For students Doctoral school General Information Curriculum Recruitment School Council Doctoral Student Council Teaching Doctoral students Mid-term evaluation For students Master theses Student training Visiting the Institute For employees Institute e-mail Eduroam Publication registry Contact us Address and contact data Important phone numbers and emails PL The Institute The Institute General information Emploees News Scientific News Gender equality plan Address and contact data Research Research profile List of publications Information in BIP Scientific Council Organizational structure GDPR Events Seminars Current seminars List of seminars Conferences Current conferences Past conferences For students Doctoral school General Information Curriculum Recruitment School Council Doctoral Student Council Teaching Doctoral students Mid-term evaluation For students Master theses Student training Visiting the Institute For employees Institute e-mail Eduroam Publication registry Contact us Address and contact data Important phone numbers and emails Events Home Events List of seminars Seminar of Physics of Wrocław University of Technology 11:15, 25-04-14 PWr, bud. A1, sala 322 Towards scalable quantum computer based on silicon quantum dotsdr hab. Łukasz CywińskiZespół Zastosowań Podstaw Teorii Kwantowej w Zakładzie Fizyki Teoretycznej IF PANClassical computers are made from semiconductors, but semiconductor-based architectures for quantum computers are still less developed than those based on superconducting circuits, trapped ions, or neutral atoms. I will try to convince you that there are good reasons to still pursue the "semiconductor path" to quantum computers and discuss challenges that need to be overcome on this path. I will also discuss what kinds of interesting physical problems from solid state physics and open quantum system physics one can grapple with, while contributing to a somewhat "engineering-like" task of building a scalable quantum computer. Special attention will be given to recent progress of coherent shuttling of spin qubits over distances of hundreds of nanometers. Achieving such shuttling over ~10 micron distance will clear one major obstacle for scalability of quantum dot based quantum computers.
Accessibility Tools
Classical computers are made from semiconductors, but semiconductor-based architectures for quantum computers are still less developed than those based on superconducting circuits, trapped ions, or neutral atoms. I will try to convince you that there are good reasons to still pursue the "semiconductor path" to quantum computers and discuss challenges that need to be overcome on this path. I will also discuss what kinds of interesting physical problems from solid state physics and open quantum system physics one can grapple with, while contributing to a somewhat "engineering-like" task of building a scalable quantum computer. Special attention will be given to recent progress of coherent shuttling of spin qubits over distances of hundreds of nanometers. Achieving such shuttling over ~10 micron distance will clear one major obstacle for scalability of quantum dot based quantum computers.